STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

STA 526 – Applied Time Series Course Syllabus

<u>Course description</u>: Time series of regression, autocorrelation and partial autocorrelation functions, autoregressive moving average models, model identification and specification techniques, stationarity and invertibility conditions, seasonal and nonseasonal modeling, forecasting.

Credit hours: 3

Course Prerequisites and Corequisites: STA 520 and MTH 317

Course Prorequience and Correquiences:	
Course outline:	Approximate time spent
Fundamental Concepts	15%
 Definition and Examples of Time Series 	
 Means and Covariances 	
 Autocovariance and Autocorrelaton Functions 	
 Stationarity 	
Stationary Processes	30%
 General Linear Processes 	
 Moving Average (MA) Processes 	
 Autoregressive (AR) Processes 	
 Autoregressive Moving Average (ARMA)Processes 	
 Invertibility 	
 Modeling and Forecasting with ARMA Processes 	25%
 Estimation 	
 Diagnostic Checking 	
 Order Selection 	
The FPE Criterion	
 The AICC Criterion 	
 Nonstationary and Seasonal Time Series Models 	30%
 Nonstationarity 	

- NonstationarityStationarity through Differencing
 - Identification Techniques
 - Unit Roots in Time Series Models
 - Forecasting ARIMA Models
 - Seasonal ARIMA Models
 - Regression with ARMA Errors

Student Learning Outcomes (SLO): At the end of STA 524, a student who has studied and learned the material should be able to:

- 1. Recognize the type of data that might be modeled with time series models. [PLO: 1, 2, 4]
- 2. Identify appropriate time series models to fit data. [PLO: 1, 2, 4]
- 3. Identify and use techniques for dealing with the following components of a time series: [PLO: 1, 2, 3, 4]
 - * Trend
 - * Cycle
 - Seasonal variations
 - * Irregular fluctuations
- 4. Employ time series for the purpose of investigating patterns. [PLO: 2, 4]
- 5. Employ time series for the purpose of forecasting. [PLO: 2, 3, 4]

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
- 2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [*Modeling*] (Model Choice and Model Interpretation)
- 3. Skill in using statistical software in order to process and interpret data. [*Data Processing*] (Computational Skills and Model Validation)
- 4. The ability to independently apply principles of probability and statistics to model and solve new or non-standard problems. [*Independent Thinking and Application*] (Existing Literature Comprehension, Independent Progression, Resourcefulness)

Date of document: 04/01/2009