

Department of Mathematics and Statistics

STA 523 – Stochastic Processes Course Syllabus

<u>Course description</u>: Markov chains, Poisson and renewal Processes, continuous time Markov processes including birth and death processes, queueing theory.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 502

Course	outline	<u>):</u>	Approximate time spent
٠	Introduction to Stochastic Modeling		5%
	0	Review of Probability Laws	
	0	Review of Distribution Theory	
	0	Markov dependence	
	0	State Space and Parameter Space Classifications	
•	Markov	v Chains	
	0	N-step transition matrices	30%
	0	Classification of States	
		 Irreducible chains 	
		 Recurrence and Transience 	
		 Periodicity and Ergodicity 	
		 Canonical Forms of Transition Matrices 	
	0	Finite Chains with Transient States	
		 Fundamental Matrix 	
		 Mean/Variance Recurrence Times 	
		 First Passage Times 	
	0	Irreducible Chains with Ergodic States	
		 Transient Behavior 	
		 Limiting Behavior 	
		 First Passage Times with Difference Equation 	ns
	Duanak	 Sojourn Times 	4.00/
•		ning Processes and Special Topics	10%
	0	 Branching Mean and Variance of Generation Sizes 	
	0	 Probability of Ultimate Extinction Higher Order Chains 	
	0	Lumpable Chains	
	0	Time Reversibility	
•	-	ical Inference for Markov Chains	10%
•	o	Estimation of Transition Matrix Elements	1078
	0	Hypothesis Testing Issues for Markov Chains	
•	-	Markov Processes	25%
•	0	The Poisson Process	2070
	0	 Tie to Exponential Distribution 	
		 Tie to Uniform Distribution 	
	0	Pure Birth Processes	
	0	Pure Death Processes	
	0	Simple Birth and Death Processes	
	-	 Introduction to Queueing Terminology: M/M/[*] 	1
	0	Limiting Behavior of Markov Processes	
	0	Markovian Networks	

Statistical Inference for Simple Markov Processes

- o Estimation: Poisson Processes and Birth and Death Process Parameters
 - Testing for Poisson Processes and Birth and Death Process
- Statistical Inference for Queues

• Additional Queueing Processes

- \circ Markovian Queues: M/M/1, M/G/1, M/M/1/K, M/M/ ∞
- o Other Models: Erlang distribution queues, G/G/1 models
- Batch Arrivals and/or Service
- Renewal Theory

0

- Renewal Function and Density
- Limiting Behavior
- Recurrence Times (Backward and Forward)
- Statistical Inference for Renewal Processes

<u>Student Learning Outcomes (SLO)</u>: At the end of STA 523, a student who has studied and learned the material should be able to:

- 1. Classify the states of a Markov chain. [PLO: 2]
- 2. Compute the mean and variance of the recurrence times for Markov chains. [PLO: 1, 2]
- 3. List physical scenarios in nature in which a Markov chain would provide a good probability model. [PLO: 2, 5]
- 4. Investigate long-run limiting behavior of states in Markov chains and interpret their meanings. [PLO: 2, 3]
- 5. Compute the summary measures of branching processes and investigate the long-run survival or death of the branching. [PLO: 2]
- 6. Model physical systems using the Poisson process. [PLO: 2, 4]
- 7. Explain the connection between Birth and Death processes and queueing models. [PLO: 2, 4]
- 8. Model physical systems using a Birth and Death process. [PLO: 2, 4]
- 9. Discriminate between popular queueing models and calculate/analyze queueing characteristics of each of these popular models. [PLO: 1, 2, 4]
- 10. Recognize when a renewal process will provide an adequate model to a process which exists in nature. [PLO: 2, 4]
- 11. Perform statistical inference techniques on Markov chains, branching processes, selected Markov processes, queues and continuous time renewal processes. [PLO: 1, 2, 4]

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
- 2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [*Modeling*] (Model Choice and Model Interpretation)
- 3. Skill in using statistical software in order to process and interpret data. [*Data Processing*] (Computational Skills and Model Validation)
- 4. The ability to independently apply principles of probability and statistics to model and solve new or non-standard problems. [*Independent Thinking and Application*] (Existing Literature Comprehension, Independent Progression, Resourcefulness)
- 5. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. **[Communication]** (Written Communication, Oral Communication)

10%

5%

5%