STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

STA 522 – Regression Analysis Course Syllabus

Course description: Linear regression, non-linear models, multiple regression.

Credit hours: 3

Course Prerequisites and Corequisites: STA 520 and MTH 317

(The following outline is subject to change and may not be in this particular order.)

Course outline:

Approximate time spent 20%

- Simple Linear Regression
 - o Scatterplots
 - o Ordinary Least Squares Estimation
 - Normal Equations
 - Properties of Least Squares Estimators
 - Derivation of Least Squares Estimators
 - o Variance Estimation
 - Model Assessment
 - Cochran's Theorem
 - F-test, t-test
 - Coefficient of Determination
 - \circ Transformations
 - o Confidence Intervals and Hypothesis Tests for
 - Slope
 - Intercept
 - Mean Response given X
 - Prediction and Prediction Intervals
 - Matrix Representation
- Multiple Linear Regression

0

- Matrix Representation
 - Ordinary Least Squares Estimation
 - Normal Equations
 - Properties of Least Squares Estimators
 - Derivation of Least Squares Estimators
- Variance Estimation
- o Model Assessment
 - F-test
 - Coefficient of Multiple Determination
- o Transformations
- Confidence Intervals and Hypothesis Tests for
 - Partial Slopes
 - Intercept
 - Mean Response given X
- Prediction and Prediction Intervals

30%

•	Regression Diagnostics	25%
	 Residual Analysis 	
	 Normality 	
	 Constant Variance 	
	 Independence 	
	 Outliers and Influential Points 	
	 Outlier Tests 	
	 Cook's Distance 	
•	Variable Selection	15%
	 Multi-colinearity 	
	 Stepwise Regression Methods 	
•	Introduction to Special Topics in Regression	10%
	 Polynomial Regression 	
	o Logistic Regression	

- Dojistic Regression
 Poisson Regression
- Poisson Regression
- Non-Linear Regression

<u>Student Learning Outcomes (SLO)</u>: At the end of STA 522, a student who has studied and learned the material should be able to:

- 1. Build a simple linear regression model. [PLO: 2, 3]
- 2. Assess the strength and appropriateness of a simple linear regression model. [PLO: 2, 3]
- 3. Interpret the following of a simple linear regression model: slope, intercept, point predictions, prediction intervals, and confidence intervals. [PLO: 2,5]
- 4. Perform the first three bullets in the context of a multiple regression model. [PLO: 2, 3, 5]
- 5. Demonstrate an understanding of the least squares estimators. [PLO: 1]
- 6. Demonstrate an understanding of the matrix representation of a Simple or Multiple Regression Model. [PLO: 2]
- 7. Use residuals to check model assumptions. [PLO: 2, 3]
- 8. Identify outliers and influential points. [PLO: 2, 3]
- 9. Use transformations to successfully (if possible) meet model assumptions. [PLO: 2, 3]
- 10. Use a statistical computer package to build a regression model and assess its strength/appropriateness. [PLO: 2, 3, 5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
- 2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [*Modeling*] (Model Choice and Model Interpretation)
- 3. Skill in using statistical software in order to process and interpret data. [*Data Processing*] (Computational Skills and Model Validation)
- 5. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. **[Communication]** (Written Communication, Oral Communication)