

Department of Mathematics and Statistics

STA 521 – Statistical Analysis II Course Syllabus

<u>Course description</u>: Analysis of variance, multiple comparisons, blocking designs, higher factorial experiments, unbalanced designs, fixed and random effects, nested designs, split-plot designs, analysis of covariance.

Credit hours: 3

Course Prerequisites and Corequisites: STA 520 or equivalent

Course	outline	2:	Approximate	e time spent
•	Analysis of Variance			25%
	0	One-way completely randomized design		
	0	Randomized complete block design		
	0	Latin Square Design		
	0	Multiple Comparisons		
•	Analys	sis of Covariance		15%
	0	Completely randomized design with one covariate		
	0	Multiple Covariates		
•	Factor	ial Models		45%
	0	Fixed, Random, and Mixed- Effects Models		
	0	Rules for obtaining Expected Mean Squares		
	0	Nested Designs		
	0	Split Plot Designs		
	0	Repeated Measures Designs		
•	Unbalanced Designs		15%	
	0	Randomized Block Designs with Missing Values		
	0	Balanced Incomplete Block Designs		

<u>Student Learning Outcomes (SLO)</u>: At the end of STA 521, a student who has studied and learned the material should be able to:

- 1. Apply appropriate statistical models to solve real-world problems. [PLO: 5]
- 2. State the assumptions on which statistical procedures are based. [PLO: 1,2]
- 3. Discuss design concepts for experiments and important factors that need to be considered prior to data collection. [PLO: 2]
- 4. Select the appropriate statistical models for a given study. [PLO: 2]
- 5. Formulate statistical hypotheses in terms of the parameters of populations, test them using the appropriate test statistics, and interpret the results. [PLO: 3,4,5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
- 2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [*Modeling*] (Model Choice and Model Interpretation)
- 3. Skill in using statistical software in order to process and interpret data. [*Data Processing*] (Computational Skills and Model Validation)
- The ability to independently apply principles of probability and statistics to model and solve new or non-standard problems. [Independent Thinking and Application] (Existing Literature Comprehension, Independent Progression, Resourcefulness)
- 5. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. **[Communication]** (Written Communication, Oral Communication)