STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

Math 517 – Linear Algebra Course Syllabus

<u>Course description</u>: Finite dimensional vector spaces, linear transformations and matrices with emphasis on numerical aspects.

Credit hours: 3

Course Prerequisites and Corequisites: Undergraduate major in mathematics, including MTH 317

Course outline:			Approximate time spent
•	Finite	Dimensional Vector Spaces	20%
	0	Vector Spaces	
	0	Subspaces of Vector Spaces	
	0	Linear Combinations and Systems of Linear Equations	
	0	Linear Dependence and Linear Independence	
	0	Bases and Dimension	
	0	Maximal Linearly Independent Subsets	
•	Linear	Transformations and Matrices	20%
	0	Linear Transformations, Null Spaces, and Ranges	
	0	The Matrix Representation of a Linear Transformation	
	0	Composition of Linear Transformations and Matrix Multipl	ication
	0	Invertibility and Isomorphisms	
	0	The Change of Coordinate Matrix	
	0	Dual Spaces	
•	Diagor	nalization of Matrices	20%
	0	Eigenvalues and Eigenvectors	
	0	Diagonalizability	
	0	Matrix Limits and Markov Chains (Optional)	
	0	Invariant Subspaces and the Cayley-Hamilton Theorem	
•	Inner F	Product Spaces	20%
	0	Inner Products and Norms	
	0	The Gram-Schmidt Orthogonalization Process and Orthogonal Complements	
	0	The Adjoint of a Linear Operator	
	0	Normal and Self-Adjoint Operators	
	0	Unitary and Orthogonal Operators and Their Matrices	
	0	Orthogonal Projections and the Spectral Theorem	
	0	Bilinear and Quadric Forms (Optional)	
	0	Einstein's Special Theory of Relativity (Optional)	
	0	Conditioning and the Rayleigh Quotient (Optional)	
	0	The Geometry of Orthogonal Operators (Optional)	
•	Canonical Forms (Optional)		20%
	0	Jordan Canonical Form I	
	0	Jordan Canonical Form II	
	0	The Minimal Polynomial	
	0	Rational Canonical Form	

MTH 517 – Linear Algebra Syllabus Continuation

<u>Student Learning Outcomes (SLO)</u>: At the end of MTH 517, a student who has studied and learned the material should be able to:

- Work basic problems that make use of ideas covered in the course. [Math PLO: 2,4], [Stat PLO: 1,4]
- Define all of the basic terms introduced in the course. [Math PLO: 3], [Stat PLO: 1]
- Provide proofs of important theorems that were discussed in class. [Math PLO: 1,2,4]; [Stat PLO: 1]
- Write up their solutions to linear algebra problems making use of good language skills. [Math PLO: 1,5], [Stat PLO: 1,5]
- Present their solutions to problems they have solved to their classmates. [Math PLO: 1,5], [Stat PLO: 1,5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with a M.S. degree and a major in mathematics will:

- 1. **[Critical Reasoning]** Independently apply the principles of logic in mathematics to develop and analyze conjectures and proofs. (understanding of abstract structures, development of definitions, development and proof of conjectures)
- 2. **[Skills]** Execute advanced mathematical procedures and build upon these standard procedures. (learning of new skills, applying or extending skills in new situations)
- 3. **[Concepts]** Demonstrate knowledge of core mathematical concepts. (definitions and theorems in analysis, definitions and theorems in linear or abstract algebra, definitions and theorems in theoretical statistics)
- 4. **[Problem Solving]** Demonstrate initiative in using various mathematical tools, including technology, to formulate, represent, and solve problems. (implement algorithms or definitions, discuss algorithmic proficiency, find numerical approximations)
- 5. **[Communication]** Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. (written, visual, oral)

Program Learning Outcomes (PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. [Concepts] (Probability and Statistical Inference)
- 4. The ability to independently apply principles of probability and statistics to model and solve new or non-standard problems. [*Independent Thinking and Application*] (Existing Literature Comprehension, Independent Progression, Resourcefulness)
- 5. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. **[Communication]** (Written Communication, Oral Communication)