STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

Math 511 – Abstract Algebra I Course Syllabus

<u>Course description</u>: Groups, subgroups, homomorphisms, isomorphisms, cosets, factor groups, the Fundamental Theorem of Group Homomorphisms, the Fundamental Theorem of Finite Abelian Groups.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 412

Course	outline:	Approximate time spent
•	Sets & binary operations	5%
	 Basic set theory 	
	 Equivalence relations 	
	 Binary operations 	
	 Isomorphic structures 	
•	Introductory Group Theory	25%
	 Definitions of group and subgroups 	
	 Canonical examples 	
	 Subgroup tests 	
	 Abelian groups 	
	 Notions of homomorphism and isomorphism 	
	 Basic definitions 	
	Properties	
	Tests for proving homomorphism	
	 Tests for proving isomorphism 	
	 Cyclic groups 	
	 Fundamental Theorem of Cyclic Groups 	
	 Generating Sets and Cayley diagrams 	
•	Permutations, Cosets and Direct Products	25%
	 Permutation groups 	
	 Orbits and cycles 	
	 Alternating groups 	
	o Cosets	
	 Theorem of Lagrange 	
	 External/ Internal Direct products 	
	 Finitely generated abelian groups 	
	 Fundamental Theorem of Finite Abelian Gro 	
•	Homomorphisms	15%
	 Definition and intuition of homomorphism 	
	Basic properties	
	Tests for proving homomorphism	
	Tests for proving isomorphism	4=0/
•	Normal Subgroups and Factor Groups	15%
	Kernels	
	 The First Isomorphism Theorem 	400/
•	Sylow Theorems	10%
	o Cauchy's Theorem	50/
•	[Finite Simple Groups]	5%

<u>Student Learning Outcomes (SLO):</u> At the end of MTH 511, a student who has studied and learned the material should be able to:

- 1. Incorporate equivalence relations into group theoretic structures, particularly factor groups. [PLO: 3]
- 2. Determine subgroups and determine whether given subsets of a group are subgroups. [PLO: 3]
- 3. Use the Fundamental Theorem of Cyclic Groups to classify and determine subgroup structure of non-cyclic groups. [PLO: 3]
- 4. Construct and manipulate group homomorphisms and isomorphisms. [PLO: 2]
- 5. Recognize and interpret theorems to prove properties about specific algebraic structure. [PLO: 1,5]
- 6. Use the skills of proof by contradiction, proof by contraposition, proof of set equality, and proof using both forms mathematical induction. [PLO: 1,5]
- 7. Define and test a potential isomorphism for being well-defined, a homomorphism, one-to-one and onto. [PLO: 1,2,4]
- 8. Use definitions of one-to-one, onto, well-defined, homomorphism, isomorphism and others to characterize a given map. [PLO: 3]
- 9. Create factor groups using normal subgroups or the First Isomorphism Theorem and interpret elements of factor groups accurately. [PLO: 3,4]
- 10. Demonstrate understanding of permutations and symmetries in a group theoretic context particularly the significance of Cayley's Theorem. [PLO: 3]
- 11. Recognize and use the Sylow Theorems to characterize certain finite groups. [PLO: 3]

Program Learning Outcomes (PLO):

Students graduating from SFASU with a M.S. degree and a major in mathematics will:

- 1. **[Critical Reasoning]** Independently apply the principles of logic in mathematics to develop and analyze conjectures and proofs. (understanding of abstract structures, development of definitions, development and proof of conjectures)
- 2. **[Skills]** Execute advanced mathematical procedures and build upon these standard procedures. (learning of new skills, applying or extending skills in new situations)
- 3. **[Concepts]** Demonstrate knowledge of core mathematical concepts. (definitions and theorems in analysis, definitions and theorems in linear or abstract algebra, definitions and theorems in theoretical statistics)
- 4. **[Problem Solving]** Demonstrate initiative in using various mathematical tools, including technology, to formulate, represent, and solve problems. (implement algorithms or definitions, discuss algorithmic proficiency, find numerical approximations)
- 5. **[Communication]** Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. (written, visual, oral)

Date of document: 04/01/2009