STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

Math 508 - Topology Course Syllabus

<u>Course description</u>: Metric spaces, topological spaces and Cartesian product spaces are studied together with certain topological properties such as compactness, connectivity and separability.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 439

Course Frerequisites and Corequisites. WITH 459		
Course outline:		Approximate time spent
	ogical Spaces	20%
•	Definition of topology	
0	Closed set	
0	Base for a topological space	
0	Subbase for a topological space	
0	Relative topology and subspaces	
0	Limit point	
0	Convergence	
 Metric Spaces 		20%
0	Definition of a metric space	
0	Open ball	
0	Interior point	
0	Open set	
 Functions 		20%
0	Continuity	
0	Homeomorphism	
0	Topological property	
	of Choice	5%
 Produ 	ct Spaces	20%
0	Product topology	
0	The Tychonoff Theorem	
Selected topics as time permits		15%
 Separation Axioms 		
0	T ₀ space	
0	T ₁ space	
0	T ₂ space (Hausdorff space)	
0	Regular space	
0	T ₃ space	
0	Normal	
	Urysohn's Lemma	
	 Tietze Extension Theorem 	
0	T ₄ space	

• Special Topological Spaces

- Separable Space
- o First axiom of countability
- Second axiom of countability
- Lindelof space
- Connected space
- Compact space
 - Alexandroff's One Point Compactification
 - The Stone-Cech compactification
- The principle of transfinite induction
- Continua
 - o Irreducible continuum
 - Limiting set

Student Learning Outcomes (SLO): At the end of MTH 508, a student who has studied and learned the material should be able to:

- 1. Fully discuss the basic notions covered in this topology course. [PLO: 3,5]
- 2. Read and interpret written mathematics.[PLO: 1,3,5]
- 3. Recognize those things that must be proven and how to best describe their thoughts that lead to an easily understandable proof of a basic theorem.[PLO: 1,3,5]
- 4. Use the language successfully, in oral and written form, while expressing their mathematical thoughts. [PLO: 5]
- 5. Present their proofs in class by relying on their material they generated prior to class. [PLO: 1,2,3,5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with a M.S. degree and a major in mathematics will:

- 1. **[Critical Reasoning]** Independently apply the principles of logic in mathematics to develop and analyze conjectures and proofs. (understanding of abstract structures, development of definitions, development and proof of conjectures)
- 2. **[Skills]** Execute advanced mathematical procedures and build upon these standard procedures. (learning of new skills, applying or extending skills in new situations)
- 3. **[Concepts]** Demonstrate knowledge of core mathematical concepts. (definitions and theorems in analysis, definitions and theorems in linear or abstract algebra, definitions and theorems in theoretical statistics)
- 5. **[Communication]** Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. (written, visual, oral)

Date of document: 04/01/2009