

Department of Mathematics and Statistics

Math 505 – Numerical Methods in Differential Equations Course Syllabus

<u>Course description</u>: Numerical integration, numerical solutions of initial value problems, numerical solutions of boundary value problems.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 305 and 337

<u>Course o</u>	<u>utline</u> :	Approximate time spen
Mathematical Preliminaries		5%
0	Review of Calculus	
0	Round off Errors and Computer Arithmetic	
0	Algorithms and Convergence	
 Interpolation and Polynomial Approximation 		20%
0	Interpolation and the Lagrange Polynomial	
0	Divided Differences	
0	Hermite Interpolation (Optional)	
0	Cubic Spline Interpolation	
lnitia	Value Problems for Ordinary Differential Equations	25%
0		
0	Euler's Method	
0	Higher Order Taylor Methods	
0	Runge-Kutta Methods	
0	Error Control and the Runge-Kutta-Fehlberg Method	
0		
0	Variable Step-Size Multistep Methods (Optional)	
0	Extrapolation Methods (Optional)	
0	Higher-Order Equations and Systems of Differential Equation	าร
0	Stability	
0	Stiff Differential Equations	
Boun	dary Value Problems for Ordinary Differential Equations	25%
0	The Linear Shooting Method	
0	The Shooting Method for Nonlinear Problems	
0	Finite-Difference Methods for Linear and Nonlinear Problems	6
0	The Rayleigh-Ritz Method	
Num	erical Solutions to Partial Differential Equations	25%
0		
0		
0	I I A A A A B A A A I D'MAAAA A A A I D'A A A A A A A A A A A A A A A A A A A	
0	An Introduction to the Finite-Element Method	

<u>Student Learning Outcomes (SLO)</u>: At the end of MTH 505, a student who has studied and learned the material should be able to:

- 1. Work basic problems that make use of ideas covered in the course. [PLO: 2, 4]
- 2. Define all of the basic terms introduced in the course. [PLO: 1, 3]
- 3. Provide proofs of important theorems that were discussed in class. [PLO: 1, 3]
- 4. Write up their solutions of numerical approximations to IVPs and BVPs making use of good language skills. [PLO: 4, 5]
- 5. Present their solutions to problems they have solved to their classmates. [PLO: 3, 4, 5]

Program Learning Outcomes (PLO):

Students graduating from SFASU with a M.S. degree and a major in mathematics will:

- 1. **[Critical Reasoning]** Independently apply the principles of logic in mathematics to develop and analyze conjectures and proofs. (understanding of abstract structures, development of definitions, development and proof of conjectures)
- 2. **[Skills]** Execute advanced mathematical procedures and build upon these standard procedures. (learning of new skills, applying or extending skills in new situations)
- 3. **[Concepts]** Demonstrate knowledge of core mathematical concepts. (definitions and theorems in analysis, definitions and theorems in linear or abstract algebra, definitions and theorems in theoretical statistics)
- 4. **[Problem Solving]** Demonstrate initiative in using various mathematical tools, including technology, to formulate, represent, and solve problems. (implement algorithms or definitions, discuss algorithmic proficiency, find numerical approximations)
- 5. **[Communication]** Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. (written, visual, oral)