STEPHEN F. AUSTIN STATE UNIVERSITY

Department of Mathematics and Statistics

MTH 503-Mathematical Statistics II Course Syllabus

<u>Course description</u>: Sufficient and complete statistics, likelihood and moment estimation, properties of estimators, interval estimation and hypothesis tests.

Credit hours: 3

Course Prerequisites and Corequisites: MTH 502

Course	e outline:	Approximate time spent
•	Sampling Distributions	10%
	 Properties of the Sample Mean and Sample Variance 	1070
	 Convergence Concepts 	
	Central Limit Theorem	
•	The t and F sampling distributions	5%
	 Properties of t and F random variables 	370
	 The role of t-statistics and F-ratios in statistics 	
	Order Statistics	5%
•	Methods of Point Estimation for Parameters	25%
•		23%
	8.8 · 1.9 · 1.8 · 1.8 · 2.	
	Utilizing calculusUtilizing graphical methods	
	B IE O O O	
	 Bayes' Estimation ■ Bayesian v. Frequentist Philosophy 	
	 Bayesian V. Frequentist Fillosophy Prior and Posterior Distributions 	
_		20%
•	Properties of Estimators Moon Squared Error and Habitacadhasa	20%
	 Mean Squared Error and Unbiasedness "Best" Estimation 	
	Civit of the Gramor Had mequality	
	Sufficiency and CompletenessRao-Blackwell Theorem	
	 UMVUE via Lehmann-Scheffe Theorem 	
_	Boot invariant Estimation	250/
•	Theory of Tests of Hypotheses	25%
	Simple Likelihood Retio Teete	
	Simple Likelihood Ratio Tests Neuman Bassan Bassata	
	 Neyman-Pearson Results General Likelihood Ratio Tests 	
	AA (LULUS LED C	
	K P B I T	
	Bayes' Tests Broportion of Hypothesia Tests	
	Properties of Hypothesis Tests Inhippedness and Consistency	
	 Unbiasedness and Consistency Type Land II, errors, Power 	
_	Type Fana if Circle, Fewer	100/
•	Confidence Intervals	10%
	Relationship to Hypothesis Tests Rivetal Quantities	
	Pivotal Quantities Took Statistical Inversion	
	 Test Statistic Inversion 	

o Coverage and Assessing/Interpreting Confidence Intervals

<u>Student Learning Outcomes (SLO):</u> At the end of MTH 503, a student who has studied and learned the material should be able to:

- 1. State and apply the Central Limit Theorem and discuss its importance in statistical inference techniques. [MTH-PLO: 3, 4], [STA-PLO: 1, 5]
- 2. Estimate parameters of probability models via several methods and compare and contrast the properties of each method. [MTH-PLO: 2, 4], [STA-PLO: 2]
- 3. Assess the quality of an estimator for a parameter, specifically addressing the issue of mean-squared error. [MTH-PLO: 2, 4], [STA-PLO: 1]
- 4. Explain and consider both a frequentist and Bayesian approach to statistical inference. [MTH-PLO: 3, 5], [STA-PLO: 1, 5]
- 5. Carry out a test of hypotheses for the parameters of a probability model, specifically being familiar with likelihood ratio methodology. [MTH-PLO: 2, 4], [STA-PLO: 1, 2]
- 6. Explain the dual relationship between hypothesis tests and confidence intervals. [MTH-PLO: 3, 5], [STA-PLO: 1, 2 5]
- 7. Calculate and properly interpret an interval estimate for parameters from a specified probability model. [MTH-PLO: 2, 5], [STA-PLO: 2, 5]
- 8. Apply the major theorems related to hypothesis tests and discuss the overall philosophy of testing. [MTH-PLO: 2, 3, 5], [STA-PLO: 1, 5]
- 9. Explain the meaning of Type I and II errors along with have a firm understanding of the role of power as it pertains to hypothesis tests. [MTH-PLO: 3, 5], [STA-PLO: 1, 5]

Program Learning Outcomes (MTH - PLO):

Students graduating from SFASU with a M.S. degree and a major in mathematics will:

- 2. **[Skills]** Execute advanced mathematical procedures and build upon these standard procedures. (learning of new skills, applying or extending skills in new situations)
- 3. **[Concepts]** Demonstrate knowledge of core mathematical concepts. (definitions and theorems in analysis, definitions and theorems in linear or abstract algebra, definitions and theorems in theoretical statistics)
- 4. **[Problem Solving]** Demonstrate initiative in using various mathematical tools, including technology, to formulate, represent, and solve problems. (implement algorithms or definitions, discuss algorithmic proficiency, find numerical approximations)
- 5. **[Communication]** Demonstrate proficiency in communicating mathematics in a format appropriate to expected audiences. (written, visual, oral)

Program Learning Outcomes (STA - PLO):

Students graduating from SFASU with an M.S. degree and a major in statistics will demonstrate:

- 1. A command of core probability and statistical concepts through major definitions and theorems. **[Concepts]** (Probability and Statistical Inference)
- 2. Strategic competence in formulating a standard probabilistic/statistical model for a given problem. [*Modeling*] (Model Choice and Model Interpretation)
- 5. Proficiency in communicating probability and statistics in a format appropriate to expected audiences. [*Communication*] (Written Communication, Oral Communication)

Date of document: 04/01/2009